热点排行 |  热点排行  | 世界之最  | 教育排行  | 娱乐排行  | 旅游排行  | 科技排行  | 深度排行  | 城市排行  | 生活排行  | 奇事排行 
参考消息 参考之家 > 参考消息 >  > 正文 

盘点史上最多人做错的8道小学数学题,附答案

2019/3/27 20:20:23  编辑: 参考消息  来源: 互联网  关键词:小学数学题

  数学的高深莫测很多时候不是我们用常人思维能够解开的,前有《世界上最难的数学题》,今天给大家带来8个史上最坑爹的数学题,说它坑爹,还不如说是往往看起来很简单的数学题,却需要我们用非常规思维去解答,下面来看看这些史上最坑爹的数学题,相信我你一个也做不出来。

  史上最多人做错的8道小学数学题

  1、 当水结成冰的时候,体积增加1/11,当冰化成水时,体积减少几分之几?

  2、 一人拿一张百元钞票到商店买了25元的东西,店主由于手头没有零钱,便拿这张百元钞票到隔壁的小摊贩那里换了100元零钱,并找回了那人75 元钱。那人拿着25元的东西和75元零钱走了。过了一会儿,隔壁小摊贩找到店主,说刚才店主拿来换零的百元钞票为假币。店主仔细一看,果然是假钞。店主只 好又找了一张真的百元钞票给小摊贩。问:在整个过程中,店主一共亏了多少钱财?

盘点史上最多人做错的8道小学数学题,附答案

  3、 今天气温是0℃,明天预计气温会比今天冷两倍,请问明天气温是多少度?

  4、 一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了, 11块钱卖给另外一个人,问他赚了多少钱?

  5、 有三个人去住旅馆,开了三个房间,一个房间是10元钱,那三个房间就是30元钱。 三个人分别开了三个房间离去,但后来老板又想:天那么晚了,给优惠5块钱吧,于是让服务员把5元钱给顾客送去,可,服务员感到很难做,5 块钱三个人 怎么分?于是私扣了两元钱,把另外三元分别分给了三位顾客。那么,客人就等于一人花了九块钱。但后来老板发现了服务员私扣了2 块钱,叫她还给客人,3乘 九就是27,,加上服务员退的两块钱,就是29 啊? 问:那一块钱哪里去了?

  6、 一天有个年轻人来到王老板的店里买了一件礼物 这件礼物成本是18元,标价是21元。 结果是这个年轻人掏出100元要买这件礼物。 王老板当 时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元。 但是街坊後来发现那100元是假钞,王老板无奈还了街坊100元。 现在问题 是:王老板在这次交易中到底损失了多少钱

  7、已知:妈妈比小孩大21岁,六年后妈妈的年龄是小孩年龄的5倍 求解:爸爸现在在那里?(真的可以计算出来啊)

  8、 小明和小红结伴到新华书店,两个人都看好了一本书。小明想买一本,但带的钱不够,差着一分钱。小红也想买一本,带的钱也不够,差着四块九毛九分。两个人打算合伙买一本,将钱凑到一起,钱还是不够。问:小明和小红各带了多少钱?这本书的标价是多少? 答案:    1。 1/12

  假设水的体积是11,那么结冰以后体积增加了1/11,变成了12

  相反的,体积是12的冰化成水以后体积变成了11,体积减小了1/12    算式表示:设水的体积是V,V×(1/11)÷[V×(1+1/11)]=1/12    2。 100元整。

  隔壁摊贩没有吃亏也没有获利,买东西的人得到75元零钱和25元的商品,那么根据平衡原理店主亏了100元整。

  3。 -2℃

  把摄氏度换成华氏度或者是绝对温度来计算(绝对温度是273.15K)。

  但是气温是0℃是一个刻度,不是数量,所以“明天比今天冷两倍”的说法有错误。    4。 -2元

  回答利润是2元的肯定是面试失败者;回答3元的也是失败,因为什么是追加成本都不知道;回答1元者,恭喜你,不属于傻子范围;结果是:本来可以直接赚 3元的,经过他3次交易后总利润变成1元了。所以正确答案是:-2元!这道题说明了日常经济生活中最平常的现象:“频繁的交易行为会增加交易成本”。    5。 27是老板收的25加上服务员的2元钱,所以最后不是27加上2,而是27加上找给他们的3元钱。

  如果你觉得以上几道题目没什么,你都会,那么下面的十道世界上公认的坑爹的数学题,你应该是没有办法了,要是你能做出来,好吧,你是世界顶尖科学家了。

  “千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题

  在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。

  “夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。

  “千僖难题”之六: 纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性

  起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。

  “千僖难题”之七: 贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想

  数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。

  八:几何尺规作图问题

  这里所说的“几何尺规作图问题”是指做图限制只能用直尺、圆规,而这里的直尺是指没有刻度只能画直线的尺。“几何尺规作图问题”包括以下四个问题

  1.化圆为方-求作一正方形使其面积等於一已知圆; 2.三等分任意角; 3.倍立方-求作一立方体使其体积是一已知立方体的二倍。 4.做正十七边形。

  以上四个问题一直困扰数学家二千多年都不得其解,而实际上这前三大问题都已证明不可能用直尺圆规经有限步骤可解决的。第四个问题是高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

  九:哥德巴赫猜想 公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a)

  任何一个>=6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。

  从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。

  十:四色猜想

  1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”

  1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。

  1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。

更多
首 页 上一页 1 下一页 尾 页 共1 条记录DevPager V1.0 Beta ! By 维诺工作室技术团队 CopyRight 版权所有 (C) WwW.Wy28.CoM 2008        
上一篇:地震云真的能预测地震吗?揭秘地震云的秘密(图)    下一篇:熊出没中最恐怖的四集,最后一个看了做恶梦(图)
   精彩推荐
相关阅读
美国各州经济实力
2019人口增长
法国人竟这样区分
越南美女对中国男
热门推荐  
北京抓获百米巨型蟒蛇
北京抓获百米巨型蟒蛇真相揭秘
    经典回顾
参考图文
精选图文
参考之家是媒体报道的集合网站,喜欢参考之家的网友都可以通过本站获得相应信息。参考之家是参考消息爱好者的乐园 以通过本站获得相应信息。参考之家是参考消息爱好者的乐园。